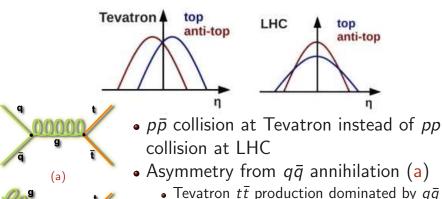

Measurement of the Forward-Backward Asymmetry of $t\bar{t}$ at the Fermilab Tevatron

Ziqing Hong CDF Collaboration

> DPF 2015 Aug. 5, 2015

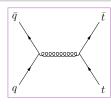


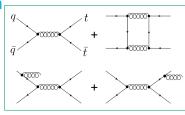
Forward-backward asymmetry

- $p\bar{p}$ collision at Tevatron
- ullet Top quarks primarily pair produced (par
 ho o tar t)
- Heavy and short-lived, decay immediately
- A_{FB} measurements are simply answering:
 Does the top quark prefer the proton direction or the opposite?

Complementarity between the Asymmetry at the Tevatron and the LHC

(b)

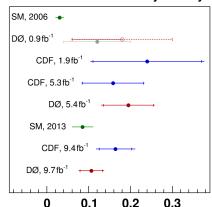

- LHC dominated by gluon fusion (90%, b)
 Sizeable effect at Tevatron, very small
- asymmetry (central vs. outer) at LHC


For details about asymmetry measurements at LHC, see next talk

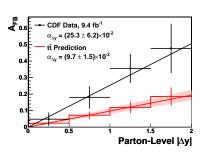
annihilation (85%, a)

Top A_{FB} : Why important?

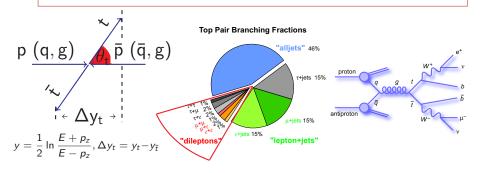
- No net asymmetry in leading order diagram
 - Asymmetry only from higher order effects
- Slight asymmetry starting from next-to-leading order (NLO) effects
 - Interference among diagrams
- Larger-than-expected EW correction and higher order QCD corrections complicate the calculation
- Precision probe of SM predictions with large mass particles



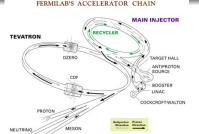
Top A_{FB} : Why interesting?

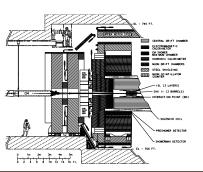

- First set of measurements showed larger-than-SM values
- Higher than SM asymmetry leaves room for various beyond-SM models
 - s-channel axigluon, t-channel W',
 Z', etc.

$t\bar{t}$ forward-backward asymmetry


$A_{\rm FB}^{t\bar{t}}$ at Tevatron

- Perhaps more interesting: $A_{\rm FB}^{t\bar{t}}$ vs. Δy_t deviates from NLO (and NNLO) SM prediction
- Need to squeeze every drop from Tevatron data to understand this potential anomaly



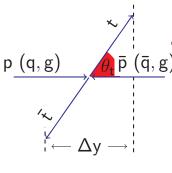

This talk

- Latest CDF top A_{FB} measurement
 - $A_{\mathsf{FB}}^{t\bar{t}}$ characterized with top rapidity (Δy_t)
 - In dilepton final state $(t \bar t o \ell^+
 u \ell^- \bar \nu b \bar b)$
- ullet Summary of the legacy results of top A_{FB} at CDF

Tevatron and CDF

Tevatron

- $p\bar{p}$ collider
- Center-of-mass energy 1.96 TeV
- Run II delivered 12fb⁻¹
- ullet Acquired $\sim 10 {
 m fb}^{-1}$ by CDF


CDF

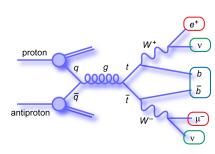
- General purpose detector
 - 1.4 T magnetic field
 - Tracking, Calorimeter and Muon systems
- Coverage in $t\bar{t}$ dilepton
 - Electron: $|\eta| < 2.0$
 - Muon : $|\eta| < 1.1$
 - Jets : $|\eta| < 2.5$

$A_{\rm FB}^{t\bar{t}}$ in dilepton

ullet $A_{\mathsf{FB}}^{tar{t}}$ measurement in dilepton

Definition of $A_{FB}^{t\bar{t}}$

$$y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z}$$


$$\Delta y = y_t - y_{\bar{t}}$$

$$\bar{p} (\bar{q}, g) A_{FB}^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

- NLO predictions from 0.05 to 0.125 (arxiv:1406.1798 and refs therein)
- Recent NNLO prediction: $A_{\rm FB}^{t\bar{t}} = 0.095 \pm 0.007$ (PRL 115, 052001 (2015))
- aN³LO prediction: $A_{\text{FB}}^{t\bar{t}} = 0.100 \pm 0.006$ (PRD 91, 071502 (2015)(R))
- Experimental results need to be unfolded to parton-level to be compared with these predictions

$t \bar t o ext{dilepton}$ Event selection

- Need a sample enriched by $t\bar{t}$ events with dilepton signature:
 - Two opposite charged leptons
 - At least two jets
 - Large $\not\in_T$ (imbalanced p_T)
- Details of $t\bar{t}$ \rightarrow dilepton data selection criteria in the backups

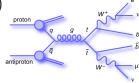
$t ar t o {\sf dilepton}$

Signal and background modeling

- Signal modeling:
 - Prediction with POWHEG MC (NLO SM w/ only QCD correction)
- Background modeling:
 - Diboson production (WW, WZ, ZZ, Wγ)
 MC prediction
 - $Z/\gamma^*+{
 m jets}$ MC prediction with correction from data
 - W+jetsData-based
 - t\(\bar{t}\) non-dilepton
 Prediction with POWHEG MC

Agreement is excellent

CDF Run II Preliminary $(9.1 \; {\rm fb}^{-1})$

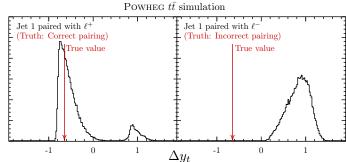

Expected and observed events $(t\bar{t} \to I^+I^- + 2\text{jets} + \not\!\!E_T)$

$(tt \rightarrow I^{\dagger}I^{\dagger} + 2jets + \not \models_T)$			
Source	Events		
Diboson	26±5		
$Z/\gamma^*+{\sf jets}$	37±4		
W+jets	28±9		
$tar{t}$ non-dilepton	$5.3 {\pm} 0.3$		
Total background	$96{\pm}18$		
Signal $t\bar{t}$ ($\sigma = 7.4 \text{ pb}$)	$386{\pm}18$		
Total SM expectation	482±36		
Observed	495		

Дk

tt Kinematic Reconstruction

- Need to reconstruct the $t\bar{t}$ 4-momenta
- Dilepton channel: under-constrained system
- Quadratic energy-momentum conservation equations
 - Two neutrino undetected, 6 unknown variables
 - 6 constraints (2 m_W , 2 m_t , \vec{E}_T)
 - Multiple solutions exist
- What makes it even more complicated
 - 2 lepton-jet pairings (b $-\bar{\rm b}$ ambiguity) 2 sets of solutions
 - b-jet energy scaling, 2 more variables
 - ∉_T has large resolution, need to let them float, another 2 more variables
- 4-dimensional parameter space × 2 lepton-jet pairing choices

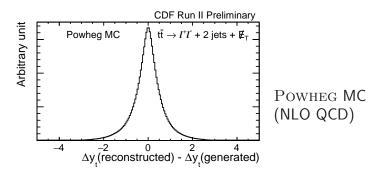

Full probability reconstruction

- 4-dimensional parameter space × 2 lepton-jet pairing choices
- A likelihood term quantifies the "goodness" of a solution
- Mapping out the full probability distribution of solutions using Markov-chain Monte Carlo
 - MCMC helps sample the parameter space efficiently
 - Used Bayesian Analysis Toolkit (<u>BAT</u>) for MCMC sampling (Comput. Phys. Commun. 180 (2009) 2197)

Reco. performance - Single event

How well does the reconstruction do?

Posterior probability density



- Δy_t probability distribution from one (well-measured) event from simulation
- Two lep-jet pairings, multiple solution structure
- Use the full distribution in the measurement
 - It contains the maximum amount of information

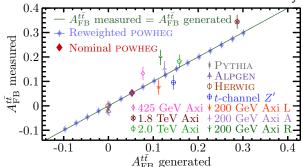
15 / 28

Reco. performance - Δy resolution

How well does the reconstruction do?

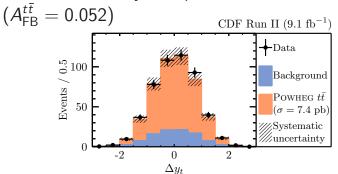
- 61% having Δy_t reconstructed within 0.5 of truth value
- ullet Unfold to extract parton-level $A_{ t FR}^{tar t}$

Unfolding


• Use these MC samples to create and vet an unfolding procedure to get truth-level $A_{\rm FB}^{t\bar{t}}$

$$\exp[r] = \sum_{t=1}^{4} \operatorname{truth}[t] * \operatorname{Eff}[t](A_{\operatorname{FB}}^{t\bar{t}}) * \operatorname{Det}[t][r] + \operatorname{bkg}[r]$$

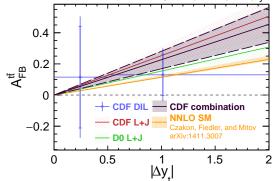
- Compare observed events with the expectation
 exp[r] with compound Poisson distribution
- Include two effects in a Bayesian model
 - ullet Smearing caused by detector response and $tar{t}$ reco
 - Acceptance imposed by detector coverage and efficiency caused by object ID and event selection
- Find truth-level truth[t] matches data best
- Truth-level $A_{FB}^{t\bar{t}}$ obtained with truth[t]


Unfolding: Extract A_{FB}^{tt}

- Use MCMC to find best parameters that match observation
- ullet Extract A_{FB}^{tt} from marginalized posterior distribution
- No bias with NLO based variations (reweighted POWHEG)
- ullet BSM scenarios generated at LO, p_T^{tt} spectrum not realistic
 - Don't anticipate reco. & unfolding to work perfectly, though biggest deviation smaller than dominant uncertainty

Data

- Methodology fully vetted, now look at data
- ullet Reconstructed Δy compared with POWHEG

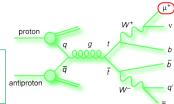


- $A_{\rm FB}^{t\bar{t}} = 0.12 \pm 0.11 ({\rm stat}) \pm 0.07 ({\rm syst})$ $A_{\rm FB}^{t\bar{t}} = 0.12 \pm 0.13$
- Dominant uncertainty is statistical

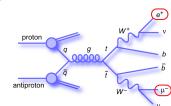
- Combined with CDF result in lepton+jets
- $ullet A_{\mathsf{FB}}^{tar{t}}(\mathsf{CDF}) = 0.160 \pm 0.045$
- Consistent with NNLO SM prediction $A_{\rm FB}^{tar{t}}=0.095\pm0.007$ within 1.5σ

$A_{\text{FB}}^{t\bar{t}}$ vs. Δy_t

- Also extracted A_{FB}^{tt} vs. Δy_t from dilepton data
- ullet Characterized by the slope lpha with zero intercept
- \bullet Combined all CDF measurements with a simultaneous fit for the slope α
- $m{\circ}~ lpha(extsf{CDF}) = 0.277 \pm 0.057$, 2.0σ from NNLO SM CDF Run II Preliminary

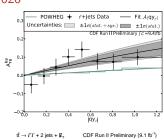

CDF top A_{FB} summary

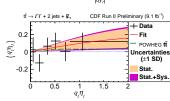
- Inclusive $A_{\rm FB}^{t\bar{t}}$ consistent with NNLO SM prediction within 1.5σ , differential result 2.0σ from NNLO SM
- Other top A_{FB} or related measurements at CDF?
- A_{FB}^ℓ and $A_{\mathsf{FB}}^{\ell\ell}$ based on leptons
- $b\bar{b}$ asymmetry measurements


A_{FB}^ℓ and $A_{\mathsf{FB}}^{\ell\ell}$

• Leptonic A_{FB}

$$A_{\mathsf{FB}}^\ell = rac{ \mathsf{N}(q_\ell \eta_\ell > 0) - \mathsf{N}(q_\ell \eta_\ell < 0)}{ \mathsf{N}(q_\ell \eta_\ell > 0) + \mathsf{N}(q_\ell \eta_\ell < 0)}$$

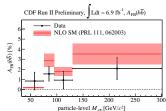

- Also lepton pair $A_{\rm FB}$ defined with lepton η difference, only in dilepton
 - · Lepton angles precisely measured
 - Tend to follow direction of parent tops
 - Also carry information about top spin
- $A_{FB}^{\ell}(NLO, SM) = 0.038 \pm 0.003$ $A_{FB}^{\ell\ell}(NLO, SM) = 0.048 \pm 0.004$ PRD 86, 034026 (2012)

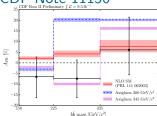


A_{FB}^{ℓ} : CDF lepton+jets & dilepton

$$A_{\mathsf{FB}}^{\ell}(\mathrm{L}+\mathrm{J}) = 0.094_{-0.029}^{+0.032} \& A_{\mathsf{FB}}^{\ell}(\mathrm{DIL}) = 0.072 \pm 0.060 \ A_{\mathsf{FB}}^{\ell}(\mathrm{CDF}) = 0.090_{-0.026}^{+0.028}$$

- Differential asymmetry $(A_{\sf FB}^\ell(q_\ell\eta_\ell))$ is best sensitive observable
- Corrected for detector effects
- Parton-level measurement based on $a \cdot \tanh(\frac{1}{2}q_{\ell}\eta_{\ell})$ modeling of $A_{\mathsf{FB}}^{\ell}(q_{\ell}\eta_{\ell})$
 - Methodology validated in PRD 90, 014040 (2014)
- CDF combination based on BLUE
- \bullet 2.0 σ higher than NLO SM
- $A_{\rm FB}^{\ell\ell}({\rm CDF~DIL})=0.076\pm0.082$, consistent with NLO SM

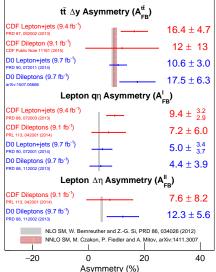



PRD 88, 072003 (2013) PRL 113, 042001 (2014)

- If the $t\bar{t}$ production asymmetry is indeed non-SM, there is good reason to believe there should be observable effects in $b\bar{b}$ asymmetry
- ullet Sensitive to axigluon hypothesis below $tar{t}$ threshold

Abb at CDF

- Low $b\bar{b}$ mass $(m_{b\bar{b}} > 40 \text{GeV/c}^2)$
 - Require a muon inside one b-jet and use it to identify quark charge
 - Result consistent with SM prediction, even some indication that we can see the CDF Note 11156 electroweak A_{FR} at the Z pole
- High $b\bar{b}$ mass $(m_{b\bar{b}} > 150 \text{GeV/c}^2)$
 - Use momentum-weighted track charge sum to differentiate between b and b
 - Result consistent with SM prediction
 - Exclude 200 GeV/c^2 axigluon models


arXiv:1504.06888

Accepted by PRD

Top A_{FB} at CDF & Tevatron

- ullet CDF inclusive $A_{\rm FB}$ consistent with predictions within 1.5σ
- Differential $A_{\rm FB}$ higher than predictions at 2σ level
- All results higher than quoted SM calculations
- Expect final Tevatron combination soon
- No anomaly shown in bb asymmetry

Conclusions: Top A_{FB}

- The A_{FB} of top-pairs at the CDF and Tevatron has been a hot topic for years
- Measurements of $A_{\rm FB}^{t\bar{t}}$, $A_{\rm FB}^{\ell}$ and $A_{\rm FB}^{\ell\ell}$ provide complementary handles to probe the production and decay of $t\bar{t}$
- ullet Last A_{FB}^{tt} measurement in CDF dilepton done
- No clear sign of new physics
- Have been pushing top physics into a precision era
- NNLO calculation is really required!

Many thanks to the conference organizers!

Backup Slides

Backup slides

$t\bar{t} \rightarrow \text{dilepton}$ event selection criteria

Exactly two leptons with $E_T>20~{ m GeV}$ and passing standard identification requirements with following modifications
-COT radius exit > 140 cm for CMIO

 $-\chi^2/ndf < 2.3$ for muon tracks

At least one trigger lepton

At least one tight and isolated lepton

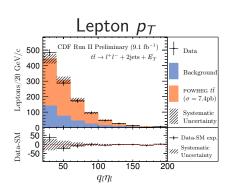
At most one lepton can be loose and/or non-isolated

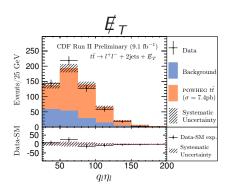
 $E_T > 25 \text{ GeV}$, but $E_T > 50 \text{ GeV}$ when there is any lepton or jet within 20° of the direction of E_T

MetSig (= $\frac{E_T}{\sqrt{E_s^{sym}}}$) > 4 $\sqrt{\rm GeV}$ for ee and $\mu\mu$ events where 76 ${\rm GeV/c^2}$ < $m_{\rm ll}$ < $106~{\rm GeV/c^2}$

Дk

 $m_{11} > 10 \text{ GeV/c}^2$


Saseline Cuts


Two or more jets with $E_T > 15 \text{ GeV}$ within $|\eta| < 2.5$

 $H_T > 200 \; \mathrm{GeV}$

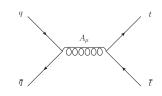
Opposite sign of two leptons

$t ar{t} ightarrow ext{dilepton}$ Signal and background modeling Validation

Agreement is excellent

Alternative Signal Modeling

- What does the η_ℓ spectra look like in various scenarios?
 - Test the measurement with both SM and BSM models
- Simulate $t\bar{t}$ in various $t\bar{t}$ production mechanisms
 - SM sample: PYTHIA/ALPGEN (LO) and POWHEG (NLO)
 - Benchmark BSM model w/ axigluon
 - Many more simulated and studied
- ullet Span large range of A_{FB}^ℓ and $A_{\mathsf{FB}}^{\ell\ell}$

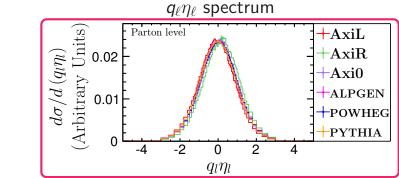

	Model	A_{FB}^ℓ (Parton Level)	$A_{FB}^{\ell\ell}$ (Parton Level)	Description	
	AxiL	-0.063(2)	-0.092(3)	Left-handed Tree-level axigluon	
	AxiR	0.151(2)	0.218(3)	Right-handed	$m = 200 \text{ GeV/c}^2$
	Axi0	0.050(2)	0.066(3)	Unpolarized	
•	ALPGEN	0.003(1)	0.003(2)	Tree-level Standard Model LO Standard Model	
	PYTHIA	0.000(1)	0.001(1)		
	POWHEG	0.024(1)	0.030(1)	NLO Standard Model	
	Calculation	0.038(3)	0.048(4)	NLO SM (PRD 86 034026 (2012))	

A_{FB}^ℓ at Tevatron

- NLO SM prediction: $A_{\rm FB}^\ell = 0.038 \pm 0.003$
 - Conventional renormalization scale $(\mu_R \sim m_t)$ w/ EWK corrections.
 - No NNLO calculation yet
- Prediction with new physics?
- Based on CDF $A_{\rm FB}^{tt}$ result (0.16 \pm 0.05), assuming everything else SM-like:

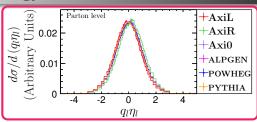
$$0.070 < A_{\mathsf{FB}}^{\ell} < 0.076$$

- In new physics models, correlations between $A_{\rm FB}^{t\bar{t}}$ and $A_{\rm FB}^{\ell}$ are model dependent
- Independent measurements of $A_{\text{FR}}^{t\bar{t}}$ and A_{FR}^{ℓ} are crucial

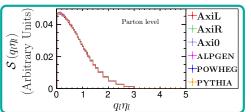

Example:

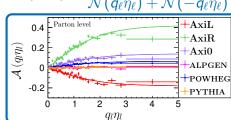
Axigluon model $(m=200~{\rm GeV/c}^2, \Gamma=50~{\rm GeV})$

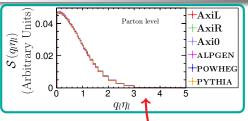
$$\rightarrow A_{\rm FB}^{tt} = 0.12$$

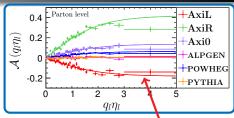

 $-0.06 < A_{\rm FB}^{\ell} < 0.15$ depending on handedness of couplings (PRD **87**,034039 (2013))

A_{FB}^ℓ Methodology - Introduction


- Difference among models are small
 - Shapes almost identical, tiny shift in the mean
- Acceptance in detector limited
 - ullet No acceptance beyond $|q_\ell \eta_\ell| = 2$
- Need a clever way to measure the subtle difference


A_{FB}^{ℓ} Methodology - Introduction


• Decomposition of $q_{\ell}\eta_{\ell}$ spectrum into symmetric and asymmetric components:


$$\mathcal{S}(q_\ell\eta_\ell) = rac{\mathcal{N}(q_\ell\eta_\ell) + \mathcal{N}(-q_\ell\eta_\ell)}{2}; \mathcal{A}(q_\ell\eta_\ell) = rac{\mathcal{N}(q_\ell\eta_\ell) - \mathcal{N}(-q_\ell\eta_\ell)}{\mathcal{N}(q_\ell\eta_\ell) + \mathcal{N}(-q_\ell\eta_\ell)}$$

A_{FB}^{ℓ} Methodology - Introduction

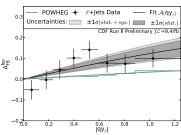
- $\mathcal{S}(q_\ell \eta_\ell)$ consistent among models
- $\mathcal{A}(q_\ell \eta_\ell)$ very different for different models
 - $_{\bullet}$ Sensitive to different values of $A_{\rm FB}^{\ell}$

Not well modelled for $q_\ell \eta_\ell > 2.5$

- $\mathcal{A}(q_{\ell}\eta_{\ell})$ well modeled with $a \cdot \tanh(\frac{1}{2}q_{\ell}\eta_{\ell})$ But contribution here is tiny
 - Detector only goes out to 2.0

• Function empirically determined

A_{FB}^{ℓ} Measurement Methodology

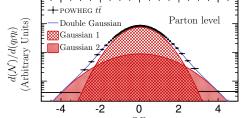

• A_{FB}^ℓ rewritten as

$$\mathcal{A}_{\mathsf{FB}}^\ell = rac{\int_0^\infty \mathrm{d}q_\ell \eta_\ell \mathcal{A}(q_\ell \eta_\ell) \mathcal{S}(q_\ell \eta_\ell)}{\int_0^\infty \mathrm{d}q_\ell' \eta_\ell' \mathcal{S}(q_\ell' \eta_\ell')}$$

• $A_{\rm FB}^{\ell}$ measurement in lepton+jets based on this decomposition and $a \cdot \tanh(\frac{1}{2}q_{\ell}\eta_{\ell})$ modeling

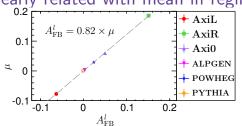
$$A_{\rm FB}^{\ell} = 0.094^{+0.032}_{-0.029}$$

ullet 1.9 σ larger than NLO SM



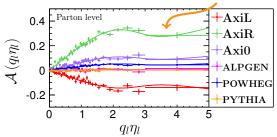
PRD 88 072003 (2013), CDF

A_{FB}^{ℓ} Methodology Study


Why does the $a \cdot \tanh$ model work so well?

• $q_\ell \eta_\ell$ spectrum <u>actually well described by</u> a double-Gaussian

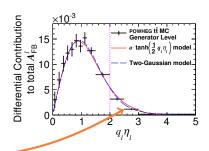
 \bullet $A_{\rm FB}^\ell$ comes from shift in mean


 \rightarrow A_{FB}^{ℓ} linearly related with mean in regime of interest

Next few pages summarized in PRD **90**, 014040 (2014)

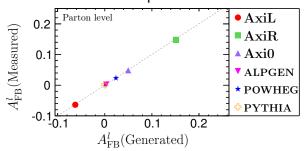
A_{FB}^{ℓ} Methodology Study

• Double-Gaussian does better job in modeling differential asymmetry in large $q_\ell \eta_\ell$ region


- ullet $\mathcal{A}(q_\ell\eta_\ell)$ most sensitive way to measure A_{FB}^ℓ
 - Provides effective measure of mean
 - Acceptance of detector mostly cancels out

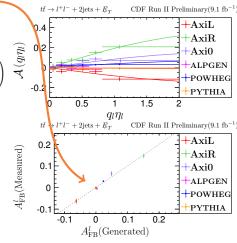
A_{FB}^{ℓ} Methodology Study

- Another way of looking at data: Differential contribution to A_{FB}^{ℓ}
- What do we learn?
 - $_{\bullet}$ Asymmetry mostly from $|\eta|<2.0$
 - Best detector coverages here
 - ullet $a\cdot anh\left(rac{1}{2}q_\ell\eta_\ell
 ight)$ is excellent for $|q_\ell\eta_\ell|<2.5$
 - Mismodeling in region with small contribution



Moving forward with a · tanh model with confidence

A_{FB}^{ℓ} Methodology - Introduction


• a · tanh model works well at parton level

• Does detector response affect the measurement?

A_{FB}^ℓ Methodology with Detector Resp.

- ullet Detector response mostly cancels out in $\mathcal{A}(q_\ell\eta_\ell)$
- No noticeable bias observed
- Measurement strategy:
 - Subtract off backgrounds
 - ullet Fit $\mathcal{A}(q_\ell\eta_\ell)$ with $a\cdot anh\left(rac{1}{2}q_\ell\eta_\ell
 ight)$
 - Obtain $\mathcal{S}(q_\ell \eta_\ell)$ from POWHEG simulation at parton-level
 - ullet Calculate A_{FB}^ℓ with $\mathcal{A}\ \&\ \mathcal{S}$
- Correct for detector response and extrapolate to inclusive $A_{\rm FB}^{\ell}$ simultaneously

Systematic uncertainty of A_{FB}^ℓ measurement

CDF Run II Preliminary (9.1 ${ m fb}^{-1}$)		
Source of Uncertainty	Value	
(A_{FB}^ℓ)		
Backgrounds	0.029	
Asymmetric Modeling	0.006	
Jet Energy Scale	0.004	
Symmetric Modeling	0.001	
Total Systematic	0.030	
Statistical	0.052	
Total Uncertainty	0.060	

A_{FB}^{ℓ} CDF combination

CDF Run II Preliminary

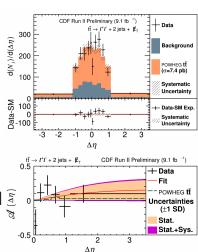
Source of uncertainty	$L+J (9.4fb^{-1})$	DIL (9.1fb^{-1})	Correlation
Backgrounds	0.015	0.029	0
Recoil modeling (Asymmetric modeling)	$+0.013 \\ -0.000$	0.006	1
Symmetric modeling	-	0.001	
Color reconnection	0.0067	-	
Parton showering	0.0027	-	
PDF	0.0025	-	
$_{ m JES}$	0.0022	0.004	1
IFSR	0.0018	-	
Total systematic	$+0.022 \\ -0.017$	0.030	
Statistics	0.024	0.052	0
Total uncertainty	$+0.032 \\ -0.029$	0.060	

$$\mathcal{A}_{\mathsf{FB}}^{\ell\ell}$$

Lepton pair A_{FB}

$$\bullet \ \ \, A_{\mathsf{FB}}^{\ell\ell} = \frac{\textit{N}(\Delta \eta > 0) - \textit{N}(\Delta \eta < 0)}{\textit{N}(\Delta \eta > 0) + \textit{N}(\Delta \eta < 0)}$$

- $\begin{array}{c} \text{proton} \\ q \\ \hline q \\ \hline 00000 \\ \hline q \\ \hline \bar{q} \\ \bar{q} \\ \hline \bar{q} \\ \bar{q} \\ \hline \bar{q} \\ \bar{q} \\ \hline \bar{q} \\ \bar{q$
- NLO SM prediction: $A_{\rm FR}^{\ell\ell} = 0.048 \pm 0.004$
- Larger expectations
- Only defined in dilepton, smaller statistics
- Provide extra information to help constraining new physics models


$A_{\mathsf{FB}}^{\ell\ell}$ in dilepton

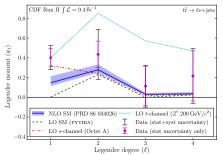
- Measurement techniques works equally well for $A_{\rm FR}^{\ell\ell}$
- Measure $A_{\mathsf{FB}}^{\ell\ell}$ with the same method

$$A_{\rm FB}^{\ell\ell} = 0.076 \pm 0.072 ({
m stat}) \pm 0.039 ({
m syst}) \ = 0.076 \pm 0.081$$

Cf.
$$A_{\mathsf{FB}}^{\ell}(\mathsf{SM},\mathsf{NLO}) = 0.048 \pm 0.004$$

- Dominant uncertainty is statistical 🗟
- Result consistent with SM
- PRL **113**, 042001 (2014) (CDF)

Systematic uncertainty of $A_{\mathsf{FB}}^{\ell\ell}$ measurement


CDF Run II Preliminary (9.1 ${ m fb}^{-1}$)		
Source of Uncertainty	Value	
$(A_{FB}^{\ell\ell})$		
Backgrounds	0.037	
Asymmetric Modeling	0.012	
Jet Energy Scale	0.003	
Symmetric Modeling	0.004	
Total Systematic	0.039	
Statistical	0.072	
Total Uncertainty	0.082	

$$\begin{split} M_{l^{+}\nu}^{2} &= (E_{l^{+}} + E_{\nu})^{2} - (\vec{p}_{l^{+}} + \vec{p}_{\nu})^{2} = M_{W}^{2} \\ M_{l^{-}\bar{\nu}}^{2} &= (E_{l^{-}} + E_{\bar{\nu}})^{2} - (\vec{p}_{l^{-}} + \vec{p}_{\bar{\nu}})^{2} = M_{W}^{2} \\ M_{l^{+}\nu b}^{2} &= (E_{l^{+}} + E_{\nu} + E_{b})^{2} - (\vec{p}_{l^{+}} + \vec{p}_{\nu} + \vec{p}_{b})^{2} = M_{t}^{2} \\ M_{l^{-}\bar{\nu}\bar{b}}^{2} &= (E_{l^{-}} + E_{\bar{\nu}} + E_{\bar{b}})^{2} - (\vec{p}_{l^{-}} + \vec{p}_{\bar{\nu}} + \vec{p}_{\bar{b}})^{2} = M_{t}^{2} \\ (\vec{p}_{\nu} + \vec{p}_{\bar{\nu}})_{x} &= (\not E_{T})_{x} \\ (\vec{p}_{\nu} + \vec{p}_{\bar{\nu}})_{y} &= (\not E_{T})_{y} \end{split}$$

$$\begin{split} \mathcal{L}(\vec{p}_{\nu}, \vec{p}_{\bar{\nu}}, E_b, E_{\bar{b}}) = & P(p_z^{t\bar{t}}) P(p_T^{t\bar{t}}) P(M^{t\bar{t}}) \times \\ & \frac{1}{\sigma_{\rm jet1}} \exp\left(-\frac{1}{2} \left(\frac{E_{\rm jet1}^{\rm measure} - E_{\rm jet1}^{\rm fit}}{\sigma_{\rm jet1}}\right)\right) \times \frac{1}{\sigma_{\rm jet2}} \exp\left(-\frac{1}{2} \left(\frac{E_{\rm jet2}^{\rm measure} - E_{\rm jet2}^{\rm fit}}{\sigma_{\rm jet2}}\right)\right) \\ & \frac{1}{\sigma_x^{\not t}} \exp\left(-\frac{1}{2} \left(\frac{\not E_x^{\rm measure} - \not E_x^{\rm fit}}{\sigma_x^{\not t}}\right)\right) \times \frac{1}{\sigma_y^{\not t}} \exp\left(-\frac{1}{2} \left(\frac{\not E_y^{\rm measure} - \not E_y^{\rm fit}}{\sigma_y^{\not t}}\right)\right) \end{split}$$

Дk

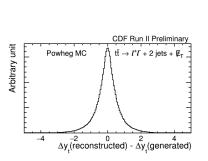
Samples with varying A_{FB}^{tt} for developing the unfolding model

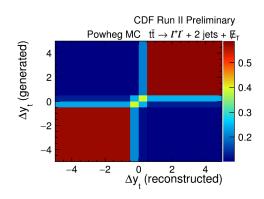
PRL 111, 182002 (2013) Parametrize $\cos \theta^*$ with Legendre Polynomials

- Motivated by CDF measurement of differential cross section in terms of Legendre polynomials
- The excess of $A_{\rm FB}^{t\bar{t}}$ comes in with an excess in the linear coefficient $(a_1, 2.1\sigma)$
- Reweight Powheg MC with various "excess" in a₁

Optimization

- Unfolding method validated, optimize before looking at data
 - ullet Minimizing the expected uncertainty on $A_{\mathsf{FB}}^{tar{t}}$
- Big improvement by keeping more information
 - Keeping full probability distributions & weighting both lepton-jet pairings according to likelihoods
- Reject low-quality lepton-jet pairings, and the whole event if both pairings are rejected
 - Jet energy got dragged too far from measured values
 - m_{lb}^2 too high, not likely good top
 - Lepton lying on top of a jet
- Incorporate more information in weighting lepton-jet pairings
 - Track-momemtum-weighted jet charge


Table of uncertainties: Full set of resu


CDF Run II Preliminary (9.1 ${ m fb}^{-1}$)		
$\left(t\overline{t}\to I^+I^-+2\mathrm{jets}+\not\!\!E_T\right)$		
Source of uncertainty $A_{\text{FB}}^{t\bar{t}}$	Value	
Statistical	0.11	
Background	0.04	
Parton Showering	0.03	
Color reconnection	0.03	
I/FSR	0.03	
JES	0.02	
Unfolding	0.02	
PDF	0.01	
Total systematic	0.07	
Total uncertainty	0.13	

- ullet $A_{\mathsf{FB}}^{tar{t}} = 0.12 \pm 0.11(\mathsf{stat}) \pm 0.07(\mathsf{syst}) = 0.12 \pm 0.13$
- Result is dominated by statistical uncertainty
- Dominant systematic is Background

Optimization - performance

ullet Δy resolution and detector response matrix after optimization

